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Abstract
By employing an exponential-type potential to replace the spin–orbit coupling
term, we solve approximately the Dirac equation for the Pöschl–Teller potential
with the pseudospin symmetry for the arbitrary spin–orbit quantum number κ .
The bound-state energy eigenvalues and the associated two-component spinors
of the Dirac particles are obtained approximately.

PACS numbers: 03.65.Ge, 03.65.Pm, 02.30.Gp

1. Introduction

Over thirty years ago, the pseudospin symmetry concept in nuclear theory was introduced
[1, 2] and it has been used to explain features of deformed nuclei [3] and superdeformation
[4], and to establish an effective shell-model coupling scheme [5]. Within the framework
of the relativistic mean field theory, Ginocchio [6] found that the pseudospin symmetry in
nuclei occurs when an attractive scalar potential S(r) and a repulsive vector potential V (r)

have the near equality of the magnitude, i.e., S(r) ∼ −V (r). Meng et al [7] showed that the
pseudospin symmetry is exact under the condition, d(V (r) + S(r))/dr = 0, and the quality
of the pseudopsin approximation in real nuclei is connected with the competition between
the pseudo-centrifugal barrier and the pseudospin-orbital potential. When the sum potential
between the vector potential and scalar potential is a constant, i.e., V (r) + S(r) = constant,
the pseudospin symmetry occurs in the Dirac equation [8]. In recent years, some authors have
studied the pseudospin symmetry for some typical physical potentials, such as the Coulomb
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potential [9], harmonic oscillator [10–12], Woods–Saxon potential [13], ring-shaped non-
spherical harmonic oscillator [14], Morse potential [15–17], Eckart potential [18–20], three-
parameter potential function as a diatomic molecule model [21], Pöschl–Teller potential [22]
and angle-dependent potential [23]. Within the framework of the Dirac equation, Alhaidari
[24–26] has investigated the relativistic extensions for some shape-invariant potentials, which
include the Morse, Rosen–Morse, Eckart, Pöschl–Teller, Scarf and Hulthén potentials.

The Pöschl–Teller potential [27] is an important diatomic molecular potential model which
has been widely applied in physics and chemical physics. This potential can be used as the
electron–nucleus potential to investigate the strong-field ionization dynamics of a simplified
one-dimensional model of a homonuclear molecular ion [28]. The Pöschl–Teller potential is a
typical anharmonic potential, which can be used to study the out-of-plane bending vibrations
[29]. The Pöschl–Teller potential is also included in the five-parameter exponential-type
potential model as a special case [30, 31]. For a diatomic molecular potential model, we
consider the reduced mass. If the nuclei have masses m1 and m2, the reduced mass is defined
as µ = m1m2/(m1 + m2) and in this point the diatomic molecular model can be included to the
pseudospin symmetry concept. By solving the Dirac equation with mixed potentials in terms
of the different methods, some authors have investigated the pseudospin symmetry for some
diatomic molecular potential, such as the Eckart potential [18–20], three-parameter potential
function as a diatomic molecule model [21] and Pöschl–Teller potential [22]. In [32], the
authors analyzed the bound-state solutions of the s-wave Klein–Gordon equation with equal
scalar and vector Pöschl–Teller potentials by using the supersymmetric quantum mechanics
method and the shape invariance approach. In [33], the authors investigated the bound-state
solutions of the s-wave Dirac equation with equally mixed Pöschl–Teller potentials in terms
of the supersymmetric quantum mechanics approach and the function analysis method. Using
the same methods, the pseudospin symmetry solutions of the Dirac equation with the Pöschl–
Teller potential for the spin–orbit quantum number κ = 1 have also been investigated [22].
However, as far as we know, one has not reported the investigation of the pseudospin symmetry
solutions of the Dirac equation with the Pöschl–Teller potential for the arbitrary spin–orbit
quantum number κ .

Motivated by the success made by some authors in finding approximate analytical
solutions of the Schrödinger equation with the centrifugal potential term for the Hulthén
potential [34], generalized Hulthén potential [35], Manning–Rosen potential [36], Eckart
potential [37] and Schiöberg diatomic molecule potential [38], in the present work, we solve
approximately the Dirac equation with the Pöschl–Teller potential for the arbitrary spin–orbit
quantum number κ . Under the condition of the exact pseudospin symmetry, some authors
[19, 20] have investigated the pseudospin symmetry solutions of the Dirac equation with
the Eckart potential for any spin–orbit quantum number κ by employing an exponential-type
potential to replace the spin–orbit coupling term.

2. Bound-state solutions

The Dirac equation for a fermion with mass M in a scalar potential S(r) and a vector potential
V (r) can be written as (h̄ = c = 1)

{α • p + β[M + S(r)]}�(r) = [E − V (r)]�(r), (1)

where E is the relativistic energy of the system, p is the three-dimensional momentum operator,
p = −i∇, α and β are the 4 × 4 Dirac matrices which, in the usual representation, are given
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by the following forms, respectively,

α =
(

0 σi

σi 0

)
, β =

(
0 I

−I 0

)
, (2)

where I is the 2 × 2 unit matrix, the subscript i can take the values of 1, 2 and 3, σ1, σ2 and
σ3 the three 2 × 2 Pauli matrices, i.e.,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3)

For a Dirac particle in a spherically symmetric potential field, the total angular momentum
operator J and spin–orbit matrix operator K = −β(σ · L + 1) commute with the Dirac
Hamiltonian, where L is the orbital angular momentum. The eigenvalues of K are
κ = ±(j + 1/2), where κ = −(j + 1/2) < 0 is for the aligned spin j = l +1/2 (s1/2, p3/2, etc),
and κ = (j + 1/2) > 0 is for the unaligned spin j = l − 1/2 (p1/2, d3/2, etc). The complete
set of the conservative quantities can be taken as (H,K, J 2, Jz), the spinor wavefunctions can
be classified according to their angular momentum number j , spin–orbit quantum number κ

and the radial quantum number n. The pseudospin symmetry refers to a quasi-degeneracy
of the single-nucleon doublets and can be characterized with the non-relativistic quantum
numbers (n, l, j = l + 1/2) and (n − 1, l + 2, j = l + 3/2), where n, l and j are the single-
nucleon radial, orbital and total angular momentum quantum numbers, respectively. Using a
pseudo-orbital angular momentum l̃ = l + 1 and a pseudospin angular momentum s̃ = 1/2,
one can express the total angular momentum as j = l̃ + s̃. For example, (3s1/2, 2d3/2) can be
denoted with pseudospin doublets (2p̃1/2, 2p̃3/2), where j = l̃ ± s̃ for the two states in the
doublet. The spherically symmetric Dirac spinor eigenfunction can be written as follows:

�nκ = 1

r

[
Fnκ (r) Y l

jm (θ, φ)

iGnκ (r) Y
∼
l
jm (θ, φ)

]
, (4)

where the upper and lower components Fnκ(r) and Gnκ(r) are real square-integral functions,

Y l
jm(θ, φ) and Y

∼
l
jm(θ, φ) are the spherical harmonic functions, and m is the projection of the

total angular momentum on the third axis. Substituting equation (4) into equation (3) leads
us to obtain two coupled differential equations for the upper and lower spinor components
Fnκ(r) and Gnκ(r) as follows, respectively,(

d

dr
+

κ

r

)
Fnκ(r) = [M + Enκ − �(r)]Gnκ(r), (5a)

(
d

dr
− κ

r

)
Gnκ(r) = [M − Enκ + 	(r)]Fnκ(r), (5b)

where �(r) and 	(r) denote the difference potential and sum potential between the vector
potential and scalar potential, respectively, i.e., �(r) = V (r)−S(r),	(r) = V (r)+S(r). By
eliminating Gnκ(r) in equation (5a) and Fnκ(r) in equation (5b), we can immediately obtain
two second-order differential equations for the upper and lower components as follows,(

d2

dr2
− κ(κ + 1)

r2
− (M + Enκ − �)(M − Enκ + 	) +

d�
dr

(
d
dr

+ κ
r

)
M + Enκ − �

)
Fnκ(r) = 0, (6a)

(
d2

dr2
− κ(κ − 1)

r2
− (M + Enκ − �)(M − Enκ + 	) −

d	
dr

(
d
dr

− κ
r

)
M − Enκ + 	

)
Gnκ(r) = 0. (6b)
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Under the condition of exact pseudospin symmetry, i.e., d	
dr

= 0 or 	 = C = constant,
equation (6b) turns into the following form:(

− d2

dr2
+

κ(κ − 1)

r2
− (M − Enκ + C)�(r)

)
Gnκ(r) = (

E2
nκ − M2 − C(M + Enκ)

)
Gnκ(r).

(7)

Equation (7) shows that the energy eigenvalues, Enκ , depend only on n and κ , i.e.,

Enκ = E(n, κ(κ − 1)). In view of the relation κ(κ − 1) = ∼
l (

∼
l +1), the energy eigenvalues,

Enκ , also depend only on n and l̃, i.e., Enκ = E(n, l̃(l̃ + 1)). For l̃ �= 0, the states with
j = l̃ ± 1/2 are degenerate. This is the pseudospin symmetry. In equation (7), we set the
difference potential �(r) as the Pöschl–Teller potential [27] given by

�(r) = −A(A + α)

cosh2 αr
+

B(B − α)

sinh2 αr
, (8)

where the parameter α is related to the range of the potential. Considering that the potential
(8) remains unchanged under the transformations of A → −A − α and B → −B + α, we
may only discuss the case of B < A. Substituting equation (8) into equation (7) yields the
following second-order Schrödiner-like equation:(

− d2

dr2
− 4(M − Enκ + C)e−2αr

(
− A(A + α)

(1 + e−2αr )2
+

B(B − α)

(1 − e−2αr )2

)
+

κ(κ − 1)

r2

)
Gnκ(r)

= (
E2

nκ − M2 − C(M + Enκ)
)
Gnκ(r). (9)

This equation cannot be solved analytically for κ �= 0 due to the spin–orbit coupling term
κ(κ − 1)/r2. In order to obtain an approximate analytical solution of equation (9) with κ �= 0,
we must make an approximation for the spin–orbit coupling term. We take the following
approximation into account for the spin–orbit coupling term,

κ(κ − 1)

r2
≈ 4α2κ(κ − 1)e−2αr

(1 − e−2αr )2
. (10)

Such an approximation is a good approximation for small values of the parameter α [36–38].
By employing this approximation into equation (9), we can write down the Schrödiner-like
equation (9) for the lower spinor component as(

− d2

dr2
− 4(M − Enκ + C)e−2αr

(
− A(A + α)

(1 + e−2αr )2
+

B(B − α)

(1 − e−2αr )2

)
+

4κ(κ − 1)α2e−2αr

(1 − e−2αr )2

)
×Gnκ(r) = (

E2
nκ − M2 − C(M + Enκ)

)
Gnκ(r). (11)

Defining a new variable z = − e2αr

4 (1 − e−2αr )2and substituting it into equation (11), we can
transform equation (11) into the following form:

z(1 − z)
d2Gnκ(z)

dz2
+

(
1

2
− z

)
dGnκ(z)

dz
+

[
−ε2 − β

z
− γ

1 − z

]
Gnκ(z) = 0, (12)

where

εnκ =
√

E2
nκ − M2 − C(M + Enκ)

2α
, (13a)

β = (M − Enκ + C)B(B − α)

4α2
+

1

4
κ(κ − 1), (13b)

γ = (M − Enκ + C)A(A + α)

4α2
. (13c)
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We analyze the asymptotic behavior of the lower spinor component Gnκ(z) for the bound
states as r → 0 (z → 0). Under this asymptotic condition, we have a solution Gnκ(z) = zη

for equation (12), where the parameter η is given by

η = 1

4

(
1 +

√
1 +

4(M − Enκ + C)B(B − α)

α2
+ 4κ(κ − 1)

)
. (14)

Making a transformation of the lower spinor component of the form Gnκ(z) =
(1 − z)δzηgnκ(z), equation (12) becomes

(1 − z)z
d2gnκ(z)

dz2
+

[
1

2
+ 2η − (1 + 2δ + 2η)z

]
dgnκ(z)

dz

−
(

ε2 + 2δη + δ2 + η2 − δ2 − 1
2δ − γ

1 − z

)
gnκ(z) = 0. (15)

In order to reduce equation (15) into a hypergeometric equation, we need the following
equation to exist,

δ2 − 1
2δ − γ = 0. (16)

Solving this equation leads us to obtain

δ = 1

4

(
1 −

√
1 +

4(M − Enκ + C)A(A + α)

α2

)
. (17)

If the parameter δ is taken the form given in equation (17), the solution of equation (15) can
be expressed in terms of the hypergeometric function, i.e.,

gnκ(z) = 2F1(a, b; c; z) = �(c)

�(a)�(b)

∞∑
k=0

�(a + k)�(b + k)

�(c + k)

zk

k!
, (18)

where the parameters a, b and c are given by

a = δ + η + iεnκ, (19a)

b = δ + η − iεnκ, (19b)

c = 1
2 + 2η. (19c)

When either a or b equals to a negative integer −n, the hypergeometric function gnκ(z) can
be reduced to a polynomial of degree n. This shows that the hypergeometric function given in
equation (18) can be finite under the following quantum condition:

a = −n, n = 0, 1, 2, 3, . . . . (20)

Substituting this quantum condition (20) into equation (19a), we have

ε2
nκ = −(−n − δ − η)2. (21)

Substituting equation (13a) into equation (21) and using equations (14) and (17), we obtain
the energy eigenvalue equation for the nuclei in the relativistic Pöschl–Teller potential (8)
under the exact pseudospin symmetry limit,

M2 − E2
nκ + C(M + Enκ) = 4α2

(
−n − 1

2
+

1

4

√
1 +

4(M − Enκ + C)A(A + α)

α2

− 1

4

√
1 + 4κ(κ − 1) +

4(M − Enκ + C)B(B − α)

α2

)2

, (22)

5
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where the quantum number n = 0, 1, 2, . . . , < −δ − η. In the case of the s-wave (κ = 1),
equation (22) becomes

M2 − E2
nκ + C(M + Enκ) = 4α2

(
−n − 1

2
+

1

4

√
1 +

4(M − Enκ + C)A(A + α)

α2

− 1

4

√
1 +

4(M − Enκ + C)B(B − α)

α2

)2

. (23)

This is just expression (31) of [22], which is the energy eigenvalue equation of the Dirac
equation with the Pöschl–Teller potential for the case of the spin–orbit quantum number
κ = 1. In terms of the original variable r , the lower component Gnκ(r) corresponding to the
energy level Enκ can be expressed as follows:

Gnκ(r) = (1 + sinh2 αr)δ(−sinh2 αr)η2F1
(−n, n + 2(δ + η); 1

2 + 2η;−sinh2 αr
)
. (24)

Substituting Gnκ(r) given in equation (24) into equation (5b), we obtain the upper spinor
component Fnκ(r) corresponding to the lower component Gnκ(r) and energy level Enκ ,

Fnκ(r) = 1

M − Enκ + C

[(
αδ sinh 2αr

1 + sinh2 αr
+

2αη cosh αr

sinh αr
− κ

r

)
(1 + sinh2 αr)δ(−sinh2 αr)η

× 2F1

(
−n, n + 2(δ + η); 1

2
+ 2η;−sinh2 αr

)
+

n(n + 2δ + 2η)α sinh 2αr
1
2 + 2η

× (1 + sinh2 αr)δ(−sinh2 αr)η × 2F1

(
−n + 1, n + 1 + 2(δ + η); 3

2

+ 2η;−sinh2 αr

)]
. (25)

From equations (24) and (25), we can see that the lower component Gnκ(r) and the upper
component Fnκ(r) can satisfy the boundary conditions for the bound states when η > 1 and
δ < 0 and η < −δ.

From equation (25) we know that in the limit of pseudospin symmetry there are only
bound negative energy states, otherwise the upper spinor component Fnκ(r) will diverge if
Enκ = M and C = 0. In generally speaking, there are no bound positive energy states under
the pseudospin limit condition [8]. The energy level Enκ is defined implicitly by energy
eigenvalue equation (22) which is a rather complicated transcendental equation. With the help
of equation (22), we can determine the energy eigenvalues corresponding to sets of n and κ

values by considering that the lower spinor component Gnκ(r) and the upper spinor component
Fnκ(r) satisfy the bound state restriction conditions, i.e., η > 1, δ < 0 and η < −δ. In order
to show the procedure of determining the bound-state energy eigenvalues from equation (22),
we take a set of physical parameter values, α = 0.35, A = 1.50, B = 1.00,M = 5.00 and
C = −0.35, to give a numerical example. When n = 1 and κ = −1, equation (22) yields
the following values of E1,−1: −4.749 874, 4.534 463. We choose E1,−1 = −4.749 874 as
the solution of equation (22), and find that the values of η and δ are η = 3.859 947 and
δ = −7.050 444, respectively. If we take E1,−1 = 4.534 463 as the solution of equation (22),
the values of η and δ are η = 1.096 028 and δ = −0.596 650, which do not satisfy the regularity
condition, η < −δ. Thus, we can only take the negative energy value E1,−1 = −4.749 874
as the solution of equation (22). With the same parameter values of α,A,B,M and C,
the numerical solutions of equation (22) for the other values of n and κ are presented in
table 1. This table shows the pseudospin partners, i.e., the Dirac eigenstate 1s1/2 with n = 1
and κ = −1 has a partner eigenstate 0d3/2 with n − 1 = 0 and κ = 2.

6
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Table 1. The bound-state energy eigenvalues Enκ of the pseudospin symmetry Pöschl–Teller
potential for several values of n and κ .

l̃ n, κ < 0 (l, j) En,κ<0 n − 1, κ > 0 (l + 2, j + 1) En−1,κ>0

1 1, −1 1s1/2 −4.749 874 0, 2 0d3/2 −4.749 874
2 1, −2 1p3/2 −4.779 318 0, 3 0f5/2 −4.779 318
3 1, −3 1d5/2 −4.818 179 0, 4 0g7/2 −4.818 179
4 1, −4 1f7/2 −4.861 628 0, 5 0h9/2 −4.861 628
1 2, −1 2s1/2 −4.923 104 1, 2 1d3/2 −4.923 104
2 2, −2 2p3/2 −4.938 822 1, 3 1f5/2 −4.938 822
3 2, −3 2d5/2 −4.958 243 1, 4 1g7/2 −4.958 243
4 2, −4 2f7/2 −4.977 479 1, 5 1h9/2 −4.977 479

When the parameter α in approximation expression (10) goes to zero, the approximation
to the spin–orbit coupling term becomes the following form:

lim
α→0

[
4α2κ(κ − 1)e−2αr

(1 − e−2αr )2

]
= κ(κ − 1)

r2
. (26)

This shows that the usual spin–orbit coupling term is the limit of the approximation to the
spin–orbit coupling term as α goes to zero. Under the limit of α becoming zero, the limits of
the energy eigenvalues and eigenfunctions go to

lim
α→0

Enκ = (A − B)2 − M, (27)

lim
α→0

Gnκ(r) = 0, (28)

lim
α→0

Fnκ(r) = 0. (29)

From the results given in above three equations, we observe that the lower spinor component
Gnκ(r) and upper spinor component Fnκ(r) become unbound in the limit of α → 0 and the
eigenenergies become constant. In fact, when the limit of α becomes zero, the limit of the
difference potential �(r) given in equation (8) goes to

lim
α→0

�(r) = ∞. (30)

This shows that the pseudospin symmetry Pöschl–Teller potential does not trap a fermion as
α goes to zero. In this limit, the relativistic Pöschl–Teller potential (8) does not possess any
bound state under the exact pseudospin symmetry condition.

3. Conclusions

In this paper, we have approximately investigated the bounded solutions of the Dirac equation
for the Pöschl–Teller potential with the pseudospin symmetry for the arbitrary spin–orbit
quantum number κ . By employing an exponential-type potential to approximate the spin–
orbit coupling term κ(κ − 1)/r2, we obtain approximately the energy eigenvalue equation
and associated two-component spinors for the pseudospin symmetry Pöschl–Teller potential.
Under the exact pseudospin symmetry limit, we recover the energy eigenvalue equation in the
Dirac equation with the Pöschl–Teller potential for the case of spin–orbit quantum number
κ = 1.

7
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